A multigrid scheme for 3D Monge-Ampère equations

نویسندگان

  • Jun Liu
  • Brittany D. Froese
  • Adam M. Oberman
  • Mingqing Xiao
چکیده

The elliptic Monge-Ampère equation is a fully nonlinear partial differential equation which has been the focus of increasing attention from the scientific computing community [Tad12, FGN13]. Fast three dimensional solvers are needed, for example in medical image registration, [HZTA04, HRT10, HPM+09, HM07], but are not yet available. We build fast solvers for smooth solutions in three dimensions, using a nonlinear fullapproximation storage multigrid method. Starting from a second-order accurate centered finite difference approximation, we present a nonlinear Gauss-Seidel iterative method which has a mechanism for selecting the convex solution of the equation. The iterative method is used as an effective smoother, combined with the full-approximation storage multigrid method. Numerical experiments are provided to validate the accuracy of the finite difference scheme and illustrate the computational efficiency of the multigrid algorithm. The solution time is almost linear in the number of variables. Problems of size 643 are solved in seconds and of size 1283 are solved in a couple of minutes on a recent model laptop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids

This paper is concerned with developing and analyzing convergent semi-Lagrangian methods for the fully nonlinear elliptic Monge–Ampère equation on general triangular grids. This is done by establishing an equivalent (in the viscosity sense) Hamilton–Jacobi–Bellman formulation of the Monge–Ampère equation. A significant benefit of the reformulation is the removal of the convexity constraint from...

متن کامل

Boundary Harnack Inequality for the Linearized Monge-ampère Equations and Applications

In this paper, we obtain boundary Harnack estimates and comparison theorem for nonnegative solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are boundary versions of Caffarelli and Gutiérrez’s interior Harnack inequality for the linearized Monge-Ampère equations. As an application, we obtain sharp upp...

متن کامل

Global W2, p estimates for solutions to the linearized Monge–Ampère equations

In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...

متن کامل

Regularity and Boundary Behavior of Solutions to Complex Monge–ampère Equations

1. Background 5 2. Plurisubharmonic functions 8 3. The complex Monge–Ampère operator 10 3.1. Bedford’s and Taylor’s definition of the complex Monge–Ampère operator 11 3.2. Cegrell’s definition of the complex Monge–Ampère operator 12 4. The Dirichlet problem for the complex Monge–Ampère operator 14 4.1. Boundary blow-up problems for the complex Monge–Ampère operator 17 4.2. Comparison principles...

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2017